These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improved physicochemical pretreatment and enzymatic hydrolysis of rice straw for bioethanol production by yeast fermentation.
    Author: Banoth C, Sunkar B, Tondamanati PR, Bhukya B.
    Journal: 3 Biotech; 2017 Oct; 7(5):334. PubMed ID: 28955631.
    Abstract:
    Lignocellulosic biomass such as agricultural and forest residues are considered as an alternative, inexpensive, renewable, and abundant source for fuel ethanol production. In the present study, three different pretreatment methods for rice straw were carried out to investigate the maximum lignin removal for subsequent bioethanol fermentation. The chemical pretreatments of rice straw were optimized under different pretreatment severity conditions in the range of 1.79-2.26. Steam explosion of rice straw at 170 °C for 10 min, sequentially treated with 2% (w/v) KOH (SEKOH) in autoclave at 121 °C for 30 min, resulted in 85 ± 2% delignification with minimum sugar loss. Combined pretreatment of steam explosion and KOH at severity factor (SF 3.10) showed improved cellulose fraction of biomass. Furthermore, enzymatic hydrolysis at 30 FPU/g enzyme loading resulted in 664.0 ± 5.39 mg/g sugar yield with 82.60 ± 1.7% saccharification efficiency. Consequently, the hydrolysate of SEKOH with 58.70 ± 1.52 g/L sugars when fermented with Saccharomyces cerevisiae OBC14 showed 26.12 ± 1.24 g/L ethanol, 0.44 g/g ethanol yield with 87.03 ± 1.6% fermentation efficiency.
    [Abstract] [Full Text] [Related] [New Search]