These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of acetyl-coenzyme A carboxylase. II. Effect of fasting and refeeding on the activity, phosphate content, and aggregation state of the enzyme.
    Author: Thampy KG, Wakil SJ.
    Journal: J Biol Chem; 1988 May 05; 263(13):6454-8. PubMed ID: 2896194.
    Abstract:
    Acetyl-CoA carboxylase isolated from freeze-clamped livers of fed rats has relatively low phosphate content (5.0 mol of Pi/mol of subunit) and high specific activity (3.5 units/mg in the absence of citrate). The enzyme from rats fasted for 12, 18, 24, and 48 h exhibited decreasing specific activities of 2.75, 1.85, 1.7, and 0.9 units/mg, respectively. Citrate activated all preparations of carboxylase, with most activation observed with the least active preparation. There was no significant change in the sensitivity of the enzyme to citrate since half-maximal activation was observed at 0.2 mM for carboxylase from fed as well as fasted rats. With the decrease in activity as a function of fasting, there was a concomitant increase in the phosphate content of carboxylase, with values of 5.3, 5.6, 6.7, and 7.6 mol of Pi/mol of subunit obtained for preparations from rats fasted for 12, 18, 24, and 48 h, respectively. Refeeding the fasted rats resulted in increased specific activity of carboxylase (3.4 units/mg) and decreased phosphate content (5.1 mol of Pi/mol of subunit). Moreover, dephosphorylation by [acetyl-CoA carboxylase]-phosphatase 2 activated the carboxylase from 48-h fasted rats to a value of 2.9 units/mg, assayed in the absence of citrate, indicating that the low activity of carboxylase from fasted rats was due to its increased phosphate content. Superose 6 chromatography showed that the enzyme exists in two polymeric forms, a highly active polymer of greater than or equal to 40 subunits and less active octamer. The former predominates in livers of fed rats, whereas the latter predominates in livers of fasted rats. The octamer could be converted to the highly active polymer by dephosphorylation. These observations indicate that fasting/refeeding results in phosphorylation/dephosphorylation of acetyl-CoA carboxylase with concomitant depolymerization/polymerization of the protein and ultimately decreasing or increasing its specific activity.
    [Abstract] [Full Text] [Related] [New Search]