These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation: Mechanism and application to norfloxacin degradation. Author: Li H, Chen J, Hou H, Pan H, Ma X, Yang J, Wang L, Crittenden JC. Journal: Water Res; 2017 Dec 01; 126():274-284. PubMed ID: 28963935. Abstract: Sustained molecular oxygen activation by iron doped silicon carbide (Fe/SiC) was investigated under microwave (MW) irradiation. The catalytic performance of Fe/SiC for norfloxacin (NOR) degradation was also studied. Rapid mineralization in neutral solution was observed with a pseudo-first-order rate constant of 0.2239 min-1 under 540 W of MW irradiation for 20 min. Increasing Fe/SiC rod and MW power significantly enhanced the degradation and mineralization rate with higher yield of reactive oxygen species (ROS). Fe shell corrosion and subsequent Fe0/II oxidation by molecular oxygen with MW activation was the key factor for NOR degradation through two-electron-transfer by Fe0 under acidic conditions and single-electron-transfer by FeII under neutral-alkaline solution. Removal rate of NOR was significantly affected by solution pH, showing higher degradation rates at both acidic and alkaline conditions. The highest removal efficiencies and rates at alkaline pH values were ascribed to the contribution of bound FeII species on the Fe shell surface due to the hydroxylation of Fe/SiC. ·OH was the main oxidizing specie for NOR degradation, confirmed by density functional theory (DFT) calculations and radical scavenger tests. DFT calculations were conducted on the reaction/activation energies of the transition/final states of NOR/degradation products, combined with intermediate identification with high performance liquid chromatography coupled with a triple-quadruple mass spectrometer (HPLC-MS/MS), the piperazinyl ring was the most reactive site for ·OH attack, followed by further ring-opening and stepwise oxidation. In this study, Fe/SiC were proved to be an excellent catalyst for the treatment of fluoroquinolone antibiotics with MW activation.[Abstract] [Full Text] [Related] [New Search]