These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phytoremediation potential of moso bamboo (Phyllostachys pubescens) intercropped with Sedum plumbizincicola in metal-contaminated soil. Author: Bian F, Zhong Z, Zhang X, Yang C. Journal: Environ Sci Pollut Res Int; 2017 Dec; 24(35):27244-27253. PubMed ID: 28965200. Abstract: This study was conducted to investigate the capability of moso bamboo grown alone and in combination with Sedum plumbizincicola to remediate heavy metals. Monoculture of moso bamboo (MM), intercropping of moso bamboo × S. plumbizincicola (IMS), and control (uncultivated, CK) were established in Cu-, Zn-, and Cd-contaminated soil. Soil properties and heavy metal removal capacity were assessed. Results showed that the available and total heavy metal contents in soil (0-20 and 20-40 cm soil layers) were ranked IMS < MM < CK. Available Cu, Zn, and Cd contents were 65.0, 28.7, and 48.4% lower in the IMS and 52.8, 24.8, and 45.5% lower in the MM than those in the CK, respectively. In plants, Cu contents in bamboo rhizomes, branches, and leaves and those of Zn and Cd in all bamboo tissues were significantly higher in the IMS than in the MM. The bioconcentration and translocation factors of bamboo tissues showed an obviously increasing tendency from MM to IMS. Moso bamboo possessed the properties of endurance to heavy metals and high biomass production. Phytoremediation by moso bamboo in association with S. plumbizincicola is an economical strategy to promote heavy metal removal from metal-contaminated soil.[Abstract] [Full Text] [Related] [New Search]