These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-675 promotes glioma cell proliferation and motility by negatively regulating retinoblastoma 1.
    Author: Zheng Y, Lu X, Xu L, Chen Z, Li Q, Yuan J.
    Journal: Hum Pathol; 2017 Nov; 69():63-71. PubMed ID: 28970140.
    Abstract:
    Previous studies indicated that microRNA (miR)-675 and its precursor lncRNA H19 were both overexpressed in glioma tissues, and H19 might play an oncogenic role. To investigate the involvement of miR-675 in gliomas and its underlying mechanisms, we here collected candidate target genes of miR-675-5p from miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/, Release 6.0), which contains the experimentally validated microRNA-target interactions. Then, regulatory effects of miR-675 on its target genes were validated using clinical samples and glioma cell lines. Involvement of the miR-675-target axis deregulation in cell proliferation, migration and invasion of glioma was demonstrated by both gain- and loss-of-function experiments. As a result, retinoblastoma 1 (RB1) was identified as a candidate target gene of miR-675-5p. Expression levels of miR-675-5p in glioma tissues and cells were negatively correlated with RB1 expression at both mRNA and protein levels. Importantly, deregulation of the miR-675-5p-RB1 axis was significantly associated with advanced World Health Organization (WHO) grade and low Karnofsky performance score (KPS) score of glioma patients. Luciferase reporter assay verified that RB1 was a direct target gene of miR-675 in glioma cells. Functionally, miR-675 promoted glioma cell proliferation, migration and invasion. Notably, simulation of RB1 antagonized the effects induced by miR-675 up-regulation in glioma cells. In conclusion, our data suggest that miR-675 may be a key negative regulator of RB1 and the imbalance of the miR-675-RB1 axis may be clinically associated with aggressive progression of glioma patients. In addition, miR-675 may act as an oncogenic miRNA in glioma cells via regulating its target gene RB1.
    [Abstract] [Full Text] [Related] [New Search]