These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: miR-200b regulates epithelial-mesenchymal transition of chemo-resistant breast cancer cells by targeting FN1. Author: Yang X, Hu Q, Hu LX, Lin XR, Liu JQ, Lin X, Dinglin XX, Zeng JY, Hu H, Luo ML, Yao HR. Journal: Discov Med; 2017 Sep; 24(131):75-85. PubMed ID: 28972876. Abstract: Chemotherapy is a cornerstone treatment for early and advanced stage breast cancer patients. However, resistance to chemotherapy remains a major obstacle, resulting in disease relapse and progression. Emerging studies demonstrated that miRNAs regulate chemotherapy-induced epithelial-mesenchymal transition (EMT) and drug resistance, but the underlying mechanisms remain unclear. Here we established a doxorubicin-resistant breast cancer cell line MCF-7/Adr, and found these cells exhibited an EMT phenotype featured by a fibroblast-like morphology, increased the capacity of migration and invasion, and underwent the changes of molecular markers of EMT including E-cadherin, N-cadherin, and vimentin. We then compared the miRNA expression profiles between MCF-7/Adr and parental MCF-7 by miRNA microarray, and identified miR-200b as the most dramatically down-regulated miRNA. Overexpression of miR-200b in chemo-resistant cells reversed the EMT phenotype and increased sensitivity to doxorubicin. Inhibition of miR-200b in parental cells induced EMT and resistance to doxorubicin. Furthermore, we characterized the target gene of miR-200b, and showed that overexpression of miR-200b down-regulated FN1 expression and the luciferase activity. Compared with the parental cells, FN1 was significantly elevated in MCF-7/Adr cells. Knockdown of FN1 reversed mesenchymal morphology, inhibited cell migration and invasion, and sensitized cells to doxorubicin. Our data suggest that miR-200b regulates EMT of chemo-resistant breast cancer cells by targeting FN1. miR-200b-based therapy may be an effective strategy in treating advanced breast cancer patients.[Abstract] [Full Text] [Related] [New Search]