These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica. Author: Ravdin JI, Moreau F, Sullivan JA, Petri WA, Mandell GL. Journal: Infect Immun; 1988 Jun; 56(6):1505-12. PubMed ID: 2897335. Abstract: Entamoeba histolytica adherence and destruction of host cells is required for in vivo pathogenicity; amebic in vitro adherence is mediated by a galactose- or N-acetyl-D-galactosamine-inhibitable surface lectin (Gal/GalNAc adherence lectin). Free intracellular Ca2+ concentration [( Ca2+]i) was measured in living amebae and target cells during amebic cytolysis of Chinese hamster ovary (CHO) cells and human polymorphonuclear neutrophils by utilizing the Ca2+ probe Fura-2 and computer-enhanced digitized microscopy. Motile E. histolytica trophozoites had oscillatory increases in [Ca2+]i in head or tail regions; however, there was no increase in regional or total amebic [Ca2+]i upon contact with a target CHO cell. Target CHO cells and polymorphonuclear neutrophils demonstrated marked irreversible increases in [Ca2+]i within 30 to 300 s following contact by an ameba (P less than 0.01); increased [Ca2+]i preceded the occurrence of nonspecific surface membrane permeability and death of the target cell. Target CHO cells contiguous on a monolayer to a cell contacted by an ameba experienced a rapid but reversible rise in [Ca2+]i (P less than 0.01) and were not killed. Galactose (40 mg/ml) totally abrogated the rise in target CHO cell [Ca2+]i that followed contact by amebae (P less than 0.01); immunoaffinity-purified amebic Gal/GalNAc adherence lectin (0.25 micrograms/ml) induced a rapid and reversible rise in CHO cell [Ca2+]i (P less than 0.01) which was inhibited by galactose. Amebic [Ca2+]i was not elevated following parasite adherence to target cells; a rapid and substantial rise in target cell [Ca2+]i occurred which was mediated, at least in part, by the Gal/GalNAc adherence lectin of the parasite and led to the death of target cells.[Abstract] [Full Text] [Related] [New Search]