These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Noninvasive Continuous Glucose Monitoring Using a Multisensor-Based Glucometer and Time Series Analysis. Author: Geng Z, Tang F, Ding Y, Li S, Wang X. Journal: Sci Rep; 2017 Oct 04; 7(1):12650. PubMed ID: 28978974. Abstract: Daily continuous glucose monitoring is very helpful in the control of glucose levels for people with diabetes and impaired glucose tolerance. In this study, a multisensor-based, noninvasive continuous glucometer was developed, which can continuously estimate glucose levels via monitoring of physiological parameter changes such as impedance spectroscopy at low and high frequency, optical properties, temperature and humidity. Thirty-three experiments were conducted for six healthy volunteers and three volunteers with diabetes. Results showed that the average correlation coefficient between the estimated glucose profiles and reference glucose profiles reached 0.8314, with a normalized root mean squared error (NRMSE) of 14.6064. The peak time of postprandial glucose was extracted from the glucose profile, and its estimated value had a correlation coefficient of 0.9449 with the reference value, wherein the root mean square error (RMSE) was 6.8958 min. Using Clarke error grid (CEG) analysis, 100% of the estimated glucose values fell in the clinically acceptable zones A and B, and 92.86% fell in zone A. The application of a multisensor-based, noninvasive continuous glucometer and time series analysis can endure the time delay between human physiological parameters and glucose level changes, so as to potentially accomplish noninvasive daily continuous glucose monitoring.[Abstract] [Full Text] [Related] [New Search]