These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inter- and intra-specific competition of duckweed under multiple heavy metal contaminated water. Author: Zhao Z, Shi H, Kang X, Liu C, Chen L, Liang X, Jin L. Journal: Aquat Toxicol; 2017 Nov; 192():216-223. PubMed ID: 28985588. Abstract: The influences of intra- and inter-species competition on ecosystems are poorly understood. Lemna aequinoctialis and Spirodela polyrhiza were used to assess the effects of exposure to different concentrations of multiple heavy metals (copper-cadmium-zinc), when the plants were grown in mixed- or mono-culture. Parameters assessed included relative growth rate (RGR), content of chlorophyll, glutathione (GSH), malondialdehyde (MDA), as well as the activity of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD). Inter-specific competition was affected by metal concentration, with results indicating that inter-specific competition significantly affected duckweed growth and metal uptake in different heavy metal exposure conditions. Inter-specific competition increased growth rate of duckweed under high metal concentrations, although when compared with intra-specific competition, it caused no obvious differences under low metal concentrations. The growth of L. aequinoctialis was further increased in mixed culture when exposed to high metal concentrations, with inter-specific competition increasing the content of cadmium and zinc, while decreasing copper content of L. aequinoctialis compared with under intra-specific conditions. Conversely, inter-specific competition increased the content of copper and cadmium of S. polyrhiza, without causing obvious differences in zinc accumulation under high ambient concentrations. Under high metal conditions, inter-specific competition increased antioxidant enzyme activities in duckweed species, increasing resistance to heavy metals. Results show that inter-specific competition makes duckweed develop mechanisms to increase fitness and survival, such as enhancement of antioxidant enzyme activities, rather than limiting metal uptake when exposed to high concentrations of multiple metals.[Abstract] [Full Text] [Related] [New Search]