These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unconventional Myosin ID is Involved in Remyelination After Cuprizone-Induced Demyelination.
    Author: Yamazaki R, Baba H, Yamaguchi Y.
    Journal: Neurochem Res; 2018 Jan; 43(1):195-204. PubMed ID: 28986688.
    Abstract:
    Myelin, which is a multilamellar structure that sheathes the axon, is essential for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes (OLs), which wrap their plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we reported that myosin ID (Myo1d) is distributed in rat CNS myelin and is especially enriched in the outer and inner cytoplasm-containing loops. Further, small interfering RNA (siRNA) treatment highlighted the involvement of Myo1d in the formation and maintenance of myelin in cultured OLs. Myo1d is one of the unconventional myosins, which may contribute to membrane dynamics, either in the wrapping process or transport of myelin membrane proteins during myelination. However, the function of Myo1d in myelin formation in vivo remains unclear. In the current study, to clarify the function of Myo1d in vivo, we surgically injected siRNA in the corpus callosum of a cuprizone-treated demyelination mouse model via stereotaxy. Knockdown of Myo1d expression in vivo decreased the intensities of myelin basic protein and myelin proteolipid protein immunofluorescence staining. However, neural/glial antigen 2-positive signals and adenomatous polyposis coli (APC/CC1)-positive cell numbers were unchanged by siRNA treatment. Furthermore, Myo1d knockdown treatment increased pro-inflammatory microglia and astrocytes during remyelination. In contrast, anti-inflammatory microglia were decreased. The percentage of caspase 3-positive cells in total CC1-positive OLs were also increased by Myo1d knockdown. These results indicated that Myo1d plays an important role during the regeneration process after demyelination.
    [Abstract] [Full Text] [Related] [New Search]