These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Plant Gene Regulation Using Multiplex CRISPR-dCas9 Artificial Transcription Factors. Author: Lowder LG, Malzahn A, Qi Y. Journal: Methods Mol Biol; 2018; 1676():197-214. PubMed ID: 28986912. Abstract: Besides genome editing, the CRISPR-Cas9-based platform provides a new way of engineering artificial transcription factors (ATFs). Multiplex of guide RNA (gRNA) expression cassettes holds a great promise for many useful applications of CRISPR-Cas9. In this chapter, we provide a detailed protocol for building advanced multiplexed CRISPR-dCas9-Activator/repressor T-DNA vectors for carrying out transcriptional activation or repression experiments in plants. We specifically describe the assembly of multiplex T-DNA vectors that can express multiple gRNAs to activate a silenced gene, or to repress two independent miRNA genes simultaneously in Arabidopsis. We then describe a "higher-order" vector assembly method for increased multiplexing capacity. This higher-order assembly method in principle allows swift stacking of gRNAs cassettes that are only limited by the loading capacity of a cloning or expression vector.[Abstract] [Full Text] [Related] [New Search]