These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The human NAIP-NLRC4-inflammasome senses the Pseudomonas aeruginosa T3SS inner-rod protein.
    Author: Grandjean T, Boucher A, Thepaut M, Monlezun L, Guery B, Faudry E, Kipnis E, Dessein R.
    Journal: Int Immunol; 2017 Aug 01; 29(8):377-384. PubMed ID: 28992059.
    Abstract:
    While NLRC4-dependent sensing of intracellular Gram-negative pathogens such as Salmonella enterica serovar typhimurium is a beneficial host response, NLRC4-dependent sensing of the Pseudomonas aeruginosa type 3 secretion system (T3SS) has been shown to be involved in pathogenicity. In mice, different pathogen-associated microbial patterns are sensed by the combination of the NLRC4-inflammasome with different neuronal apoptosis inhibitory proteins (NAIPs). NAIP2 is involved in sensing PscI, an inner-rod protein of the P. aeruginosa T3SS. Surprisingly, only a single human NAIP (hNAIP) has been found. Moreover, there is no description of hNAIP-NLRC4 inflammasome recognition of T3SS inner-rod proteins in humans. Here, we show that the P. aeruginosa T3SS inner-rod protein PscI and needle protein PscF are both sensed by the hNAIP-NLRC4 inflammasome in human macrophages and PBMCs from healthy donors, allowing caspase-1 and IL-1β maturation and resulting in a robust inflammatory response. TLR4 and TLR2 are involved in redundantly sensing these two T3SS components.
    [Abstract] [Full Text] [Related] [New Search]