These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Frequency sensitivity in Northern saw-whet owls (Aegolius acadicus).
    Author: Beatini JR, Proudfoot GA, Gall MD.
    Journal: J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Feb; 204(2):145-154. PubMed ID: 28993864.
    Abstract:
    Northern saw-whet owls (Aegolius acadicus) are known for their unique asymmetrical ear structure and ability to localize prey acoustically, yet few attempts have been made to explore the auditory capabilities of this species. In this study, we evoked auditory brainstem responses (ABRs) with tonebursts to assess three main hypotheses regarding the evolution of auditory sensitivity: sender-receiver matching, ecological constraints, and phylogenetic/morphological constraints. We found that ABR amplitude increased with increasing stimulus level, which is consistent with results in other avian species. ABR amplitudes, latencies, and thresholds indicate that the hearing range of Northern saw-whet owls extends from 0.7 to 8.6 kHz, with an extended frequency range of best sensitivity between 1.6 and 7.1 kHz. Sensitivity fell off rapidly above and below these frequencies. The average audiogram was structurally similar to those found in other species of owls, suggesting that phylogeny or morphology may be constraining the frequency range of auditory sensitivity. However, ABR thresholds were 10-25 dB lower than those of Eastern screech-owls (Megascops asio), with thresholds below 0 dB SPL in some individuals. The lowest thresholds were at frequencies not found in the vocalizations of Northern saw-whet owls, suggesting ecological constraints rather than conspecific vocalizations are driving absolute sensitivity.
    [Abstract] [Full Text] [Related] [New Search]