These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lithocholic bile acid inhibits lipogenesis and induces apoptosis in breast cancer cells.
    Author: Luu TH, Bard JM, Carbonnelle D, Chaillou C, Huvelin JM, Bobin-Dubigeon C, Nazih H.
    Journal: Cell Oncol (Dordr); 2018 Feb; 41(1):13-24. PubMed ID: 28993998.
    Abstract:
    BACKGROUND: It has amply been documented that mammary tumor cells may exhibit an increased lipogenesis. Biliary acids are currently recognized as signaling molecules in the intestine, in addition to their classical roles in the digestion and absorption of lipids. The aim of our study was to evaluate the impact of lithocholic acid (LCA) on the lipogenesis of breast cancer cells. The putative cytotoxic effects of LCA on these cells were also examined. METHODS: The effects of LCA on breast cancer-derived MCF-7 and MDA-MB-231 cells were studied using MTT viability assays, Annexin-FITC and Akt phosphorylation assays to evaluate anti-proliferative and pro-apoptotic properties, qRT-PCR and Western blotting assays to assess the expression of the bile acid receptor TGR5 and the estrogen receptor ERα, and genes and proteins involved in apoptosis (Bax, Bcl-2, p53) and lipogenesis (SREBP-1c, FASN, ACACA). Intracellular lipid droplets were visualized using Oil Red O staining. RESULTS: We found that LCA induces TGR5 expression and exhibits anti-proliferative and pro-apoptotic effects in MCF-7 and MDA-MB-231 cells. Also, an increase in pro-apoptotic p53 protein expression and a decrease in anti-apoptotic Bcl-2 protein expression were observed after LCA treatment of MCF-7 cells. In addition, we found that LCA reduced Akt phosphorylation in MCF-7 cells, but not in MDA-MB-231 cells. We also noted that LCA reduced the expression of SREBP-1c, FASN and ACACA in both breast cancer-derived cell lines and that cells treated with LCA contained low numbers of lipid droplets compared to untreated control cells. Finally, a decrease in ERα expression was observed in MCF-7 cells treated with LCA. CONCLUSIONS: Our data suggest a potential therapeutic role of lithocholic acid in breast cancer cells through a reversion of lipid metabolism deregulation.
    [Abstract] [Full Text] [Related] [New Search]