These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Photoperiodic adjustments in hypothalamic amines, gonadotropin-releasing hormone, and beta-endorphin in the white-footed mouse.
    Author: Glass JD, Ferreira S, Deaver DR.
    Journal: Endocrinology; 1988 Aug; 123(2):1119-27. PubMed ID: 2899500.
    Abstract:
    This study was undertaken to examine short photoperiod (SD; 8 h of light, 16 h of darkness)-induced alterations in reproductive endocrine and neuroendocrine parameters in the male white-footed mouse, Peromyscus leucopus. Exposure to SD for 8 weeks caused dramatic reductions in testis and seminal vesicle weights, decreased circulating LH and testosterone levels, and lowered the content of LH in the pituitary gland relative to those in mice under long photoperiod (LD; 16 h of light, 8 h of darkness). These changes were associated with significant increases in content of radioimmunoassayable GnRH in the mediobasal hypothalamus (MBH) and anterior hypothalamus at two time points in the light/dark cycle: 2100 h (dark phase) and 0900 h (light phase), respectively. Exposure to SD also caused an increase in radioimmunoassayable beta-endorphin in the MBH and preoptic area of the hypothalamus (POA) at 2100 h, but not at 0900 h. Mice exposed to SD also had a significantly higher metabolism of serotonin in the MBH at 0900 and 2100 h compared to mice under LD. The concentration of noradrenaline in the hypothalamus was unaffected by exposure to SD. However, the metabolism of dopamine (DA) in the POA at 0900 h was significantly increased relative to that in mice maintained under LD at this time. This increase in DA metabolism was associated with enhanced immunocytochemical staining for tyrosine hydroxylase in nerve fibers of the POA. Conversely, staining for tyrosine hydroxylase in tuberoinfundibular DA cell bodies of the arcuate nucleus was less intense under SD exposure. From these data it is concluded that exposure to SD caused regional and time-dependent alterations in the activities of hypothalamic amines (serotonin and DA) and neuropeptides (beta-endorphin and GnRH). These changes may be part of the neuroendocrine mechanism for SD-induced seasonal adaptations.
    [Abstract] [Full Text] [Related] [New Search]