These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Restoration of catecholamine content of previously depleted adrenal medulla in vitro: importance of synthesis in maintaining the catecholamine stores. Author: Wakade AR, Wakade TD, Malhotra RK. Journal: J Neurochem; 1988 Sep; 51(3):820-9. PubMed ID: 2900877. Abstract: The functional integrity of adrenal chromaffin storage vesicles was studied in the perfused rat adrenal gland subjected to intense exocytosis. Continuous perfusion with 55 mM K+-Krebs solution produced a large and uninterrupted secretion of catecholamines. Total amounts secreted within 45 min were 4.66 micrograms and represented almost 30% of the total tissue catecholamine content. If perfusion with excess K+ was extended to 90 min, the secretion increased further to 5.76 micrograms. Despite such a large secretory response, the catecholamine content of the K+-stimulated adrenal medulla was comparable to that of unstimulated control, suggesting an enhanced resynthesis to maintain the normal levels. Pretreatment of rats with alpha-methyl-p-tyrosine, and including this agent in the perfusion medium during stimulation with K+, caused a marked reduction in catecholamine content. The degree of depletion depended on the extent of stimulation with K+ (45% in 45 min and 60% in 90 min). Although depleted catecholamine stores did not show spontaneous recovery in 2 h, inclusion of tyrosine, L-3,4-dihydroxyphenylalanine or dopamine (but not epinephrine or norepinephrine) completely restored the catecholamine content of previously depleted adrenal medulla. Repletion achieved by tyrosine was time dependent (evident in 30 min and maximum in 2 h) and blocked by alpha-methyl-p-tyrosine but not by calcium deprivation. The ratio of epinephrine to norepinephrine remained constant during various stages of the experiment, suggesting both types of vesicles were equally affected by different treatments. The secretory response (10 Hz for 30 s) was unaffected even though tissue catecholamine stores were significantly depleted (50%). In summary, we have demonstrated that catecholamine content of the isolated perfused adrenal gland can be reduced by stimulation of exocytotic secretion in the presence of tyrosine hydroxylase inhibitor. Since the depleted stores can be fully refilled by synthesis of catecholamines from its precursors, it is suggested that chromaffin vesicles may be reutilized for the purpose of synthesis, storage, and secretion of adrenal medullary hormones.[Abstract] [Full Text] [Related] [New Search]