These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tonic descending inhibition of the spinal cardio-sympathetic reflex in the cat.
    Author: Müller UW, Dembowsky K, Czachurski J, Seller H.
    Journal: J Auton Nerv Syst; 1988 Aug; 23(2):111-23. PubMed ID: 2902120.
    Abstract:
    Electrical stimulation of the left inferior cardiac nerve elicited a two-component reflex potential (spinal and supraspinal reflexes) in the ipsilateral white ramus T3 from which recordings were made in chloralose-anaesthetised cats. Reversible interruption of all spinal pathways achieved by cooling the spinal cord at C2/C3 produced an enhancement of the spinal reflex and abolished the supraspinal reflex, the latter usually being the more prominent reflex potential prior to spinal cord block. The spinal cord block-induced increase in the amplitude of the spinal reflex was, however, less than the increase observed during stimulation of the somatic intercostal nerve T4. Recordings of the afferent volley following cardiac nerve stimulation and analysis of the stimulus-reflex response relationship in neuraxis-blocked cats indicated that the spinal reflex as determined here was activated by A delta afferent fibres. However, if stimulus strength was raised above C-fibre threshold, spinal cord block revealed in addition a late spinal reflex response. In some cases, the appearance of this late potential was accompanied by a secondary decline of the earlier spinal reflex potential, possibly indicating C-fibre-mediated afferent inhibition. Neither baroreceptor activation nor denervation had any effect on spinal reflex amplitudes. Pharmacologically, clonidine given i.v. to cats with a blocked neuraxis reduced the spinal reflex amplitudes to pre-block values, an action which could be antagonised by the subsequent administration of the alpha 2-adrenoceptor antagonist rauwolscine. When given to non-pretreated cats with intact neuraxis, however, neither rauwolscine nor its analog yohimbine were capable of inducing a persistent release from tonic inhibition. The results suggest that both purely visceral and somato-visceral reflexes are subject to tonic descending inhibition, but they do not support the hypothesis that a catecholamine is the responsible transmitter mediating this inhibition.
    [Abstract] [Full Text] [Related] [New Search]