These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Discovery of Benzo[g]quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors. Author: Alsaid MS, Al-Mishari AA, Soliman AM, Ragab FA, Ghorab MM. Journal: Eur J Med Chem; 2017 Dec 01; 141():84-91. PubMed ID: 29028534. Abstract: An array of some new N-(substituted)-2-((4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-yl)thio)acetamide 5-19 were synthesized from the starting compound 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl)benzenesulfonamide 4, to be assessed for their cytotoxic activity against A549 lung cancer cell line and to determine their inhibitory effect on EGFR tyrosine kinase enzyme. Compounds 5-19 showed high activity towards A549 cell line with IC50 values of 0.12-8.70 μM. Compounds 6, 12 and 18 were the most potent in this series. These compounds were further screened as dual inhibitors for EGFR/HER2 enzymes in comparison with erlotinib and were found to possess very potent activity. Compound 12 showed the highest activity with IC50 values of 0.06 μM and 0.30 μM towards EGFR and HER2, respectively. Accordingly, the apoptotic effect of the most potent compounds 6, 12 and 18 was investigated and showed a marked increase in the level of caspases-3 by 6, 9 and 8 folds, respectively, compared to the control cells. Moreover, Molecular modeling was performed inside the active site of EGFR, keeping in mind their binding possibilities, bond lengths, angles and energy scores. It was found that the most active compounds demonstrated the best binding scores in the active site of EGFR, which may clarify their high inhibition profile.[Abstract] [Full Text] [Related] [New Search]