These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction.
    Author: Sekar R, DiChristina TJ.
    Journal: FEMS Microbiol Lett; 2017 Nov 15; 364(21):. PubMed ID: 29029043.
    Abstract:
    Oil spill components include a range of toxic saturated, aromatic and polar hydrocarbons, including pyrene and anthracene. Such contaminants harm natural ecosystems, adversely affect human health and negatively impact tourism and the fishing industries. Current physical, chemical and biological remediation technologies are often unable to completely remove recalcitrant oil spill components, which accumulate at levels greater than regulatory limits set by the Environmental Protection Agency. In the present study, a microbially driven Fenton reaction, previously shown to produce hydroxyl (HO • ) radicals that degrade chlorinated solvents and associated solvent stabilizers, was also found to degrade source zone concentrations of the oil spill components, pyrene (10 μM) and anthracene (1 μM), at initial rates of 0.82 and 0.20 μM h -1 , respectively. The pyrene- and anthracene-degrading Fenton reaction was driven by the metal-reducing facultative anaerobe Shewanella oneidensis exposed to alternating aerobic and anaerobic conditions in the presence of Fe(III). Similar to the chlorinated solvent degradation system, the pyrene and anthracene degradation systems required neither the continual supply of exogenous H 2 O 2 nor UV-induced Fe(III) reduction to regenerate Fe(II). The microbially driven Fenton reaction provides the foundation for the development of alternate ex situ and in situ oil and gas spill remediation technologies.
    [Abstract] [Full Text] [Related] [New Search]