These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Correlation between the Arrhenius crossover and the glass forming ability in metallic glasses.
    Author: Wen T, Yao W, Wang N.
    Journal: Sci Rep; 2017 Oct 13; 7(1):13164. PubMed ID: 29030595.
    Abstract:
    The distinctive characteristic of the metallic glass-forming system is that the variation in viscosity with temperature obeys Vogel-Fulcher-Tammann (VFT) relationship in the undercooled state and Arrhenius relationship in the high temperature region. A dimensionless index has thus been proposed based on the Arrhenius-VFT crossover and the classical nucleation rate and growth rate theory to evaluate the glass-forming ability (GFA). The indicator G(a) is expressed with the combination of T g , the glass transition temperature, T x , the onset crystallization temperature, T l , the liquidus temperature, T 0, the VFT temperature, and a a constant that could be determined according to the best correlation between G(a) and the critical cooling rate (R c ). Compared with other GFA indexes, G(a) shows the best fit with R c , with the square of the correlation coefficient (R 2) being 0.9238 when a = 0.15 for the 23 various alloy systems concerned about. Our results indicate the crossover in the viscosity variation has key effect on GFA and one can use the index G(a) to predict R c and GFA for different alloys effectively.
    [Abstract] [Full Text] [Related] [New Search]