These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative analysis of ginsenosides in human glucocorticoid receptor binding, transactivation, and transrepression.
    Author: Hu C, Lau AJ, Wang R, Chang TKH.
    Journal: Eur J Pharmacol; 2017 Nov 15; 815():501-511. PubMed ID: 29031898.
    Abstract:
    Conflicting data exist on the effect of ginsenosides on transactivation of human glucocorticoid receptor α (herein referred to as glucocorticoid receptor), and relatively little is known regarding the effect of these chemicals on transrepression of this receptor. We investigated the effect of 20(S)-protopanaxadiol (PPD), PPD-type ginsenosides (Rb1, Rb2, Rc, Rd, Rh2, and Compound K), 20(S)-protopanaxatriol (PPT), and PPT-type ginsenosides (Re, Rf, Rg1, and Rh1) on glucocorticoid receptor binding, transactivation, and transrepression. Each ginsenoside was less efficacious than dexamethasone (positive control) in binding to the ligand-binding domain of glucocorticoid receptor. Among the ginsenosides investigated, Rh2 had the smallest IC50 value (15 ± 1µM), whereas it was 0.02 ± 0.01µM for dexamethasone. In contrast to dexamethasone, none of the ginsenosides influenced glucocorticoid receptor transactivation or transrepression in LS180 human colorectal adenocarcinoma cells, as assessed in a dual-luciferase reporter gene assay. Rh2 did not affect the endogenous mRNA level of tyrosine aminotransferase (marker for glucocorticoid receptor transactivation) or corticosteroid-binding globulin (marker for glucocorticoid receptor transrepression) in HepG2 human hepatocellular carcinoma cells. This chemical also did not alter the response by a glucocorticoid receptor agonist (dexamethasone or Compound A) in the dual-luciferase reporter gene assay or target gene expression assay. In conclusion, ginsenosides were less efficacious and less potent than dexamethasone in binding to the ligand-binding domain of glucocorticoid receptor. The number of glycosylated groups was associated with a decrease in receptor binding potency. PPD-type and PPT-type ginsenosides are not modulators of glucocorticoid receptor transactivation or transrepression in LS180 and HepG2 cells.
    [Abstract] [Full Text] [Related] [New Search]