These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of the anode potential on the physiology and proteome of Shewanella oneidensis MR-1. Author: Grobbler C, Virdis B, Nouwens A, Harnisch F, Rabaey K, Bond PL. Journal: Bioelectrochemistry; 2018 Feb; 119():172-179. PubMed ID: 29032328. Abstract: Shewanella species respire using iron and manganese oxides as well as electrodes as solid terminal electron acceptors. Shewanella oneidenis MR-1 exploits mediated as well as direct extracellular electron transfer (EET) modes to transfer electrons at different formal potentials. These different EET modes at different potentials may utilise alternate electron transfer pathways. Therefore, we investigated how different anode potentials, providing different maximum microbial energy gains impacted S. oneidensis microbial physiology. Using quantitative proteomics, comparative analysis of the cellular variations to different anode potentials was performed. A label-free proteomic mass spectrometric analysis method, SWATH-MS, was used to gather quantitative information to determine physiological changes of Shewanella oneidensis MR-1 grown at different anodic potentials. S. oneidensis was cultured and grown in electrochemical cells at the set anode potentials of +0.71V, +0.21V & -0.19V versus SHE reference electrode, while the current production was monitored. At maximum current, electrodes were removed and whole-cell proteins extracted. Subsequent SWATH-MS analysis revealed information on 740 identified proteins across the three electrode potentials. For the first time, we show the abundance of S. oneidensis electron transfer proteins differs with electrode potential.[Abstract] [Full Text] [Related] [New Search]