These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endothelial cells modified by adenovirus vector containing nine copies hypoxia response elements and human vascular endothelial growth factor as the novel seed cells for bone tissue engineering.
    Author: Song X, Shi L, Chen L, Liu X, Qu X, Wang K, Wei F.
    Journal: Acta Biochim Biophys Sin (Shanghai); 2017 Nov 01; 49(11):973-978. PubMed ID: 29036390.
    Abstract:
    Vascularization is one of the hotspots during the development of new therapeutic strategies for bone tissue engineering, which can alleviate hypoxic circumstance and prevent transplant failure. Vascular endothelial growth factor (VEGF) gene transfection using recombinant adenovirus (Ad) vector can effectively promote angiogenesis, but uncontrolled long-term continuous expression of VEGF brings safety concern. Here we constructed a recombinant Ad vector containing nine copies of HRE promoter and the hVEGF165 gene, which conserved the oxygen sensitivity of hypoxia-inducible factor-1/hypoxia response elements (HIF-1/HRE). After transfection into human umbilical vein endothelial cells (HUVEC), the hVEGF165 mRNA and protein levels were much higher in response to hypoxia, as revealed by RT-PCR and ELISA, respectively. Furthermore, Ad-9HRE-hVEGF165 vector effectively promoted proliferation, migration and tube formation of HUVEC under hypoxic conditions. Thus we believe that the Ad-9HRE-hVEGF165 vector can contribute to the regulation of vascularization, which may provide a new approach for a better control of the expression of hVEGF165 during bone tissue engineering.
    [Abstract] [Full Text] [Related] [New Search]