These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Automated DXA-based finite element analysis for hip fracture risk stratification: a cross-sectional study. Author: Yang S, Leslie WD, Luo Y, Goertzen AL, Ahmed S, Ward LM, Delubac I, Lix LM. Journal: Osteoporos Int; 2018 Jan; 29(1):191-200. PubMed ID: 29038836. Abstract: UNLABELLED: Fracture risk indices (FRIs) generated from DXA-based finite element analysis were associated with hip fracture independent of FRAX score computed with femoral neck bone mineral density (BMD). Prospective studies are warranted to determine whether FRIs represent an improvement over BMD for predicting incident hip fractures. INTRODUCTION: The study aims to examine the association between prior hip fracture and FRIs derived from automated finite element analysis (FEA) of DXA hip scans. Femoral neck, intertrochanteric, and subtrochanteric FRIs were calculated as the von Mises stress induced by a sideways fall divided by the bone yield stress over the specified region of interest (ROI). METHODS: Using the Manitoba Bone Mineral Density Database, we selected women age ≥ 65 years with femoral neck T-scores below - 1 and no osteoporosis treatment. From this population, we identified 324 older women with hip fracture before DXA testing and a random sample of 658 non-fracture controls. FRIs were derived from the anonymized DXA scans. Logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) for the associations between FRIs (per SD increase) and hip fracture. RESULTS: After adjusting for FRAX score (hip fracture with BMD), femoral neck FRI (OR 1.36, 95% CI 1.13, 1.64), intertrochanteric FRI (OR 1.81, 95% CI 1.44, 2.27), and subtrochanteric FRI (OR 2.09, 95% CI 1.68, 2.60) were associated with hip fracture. Intertrochanteric and subtrochanteric FRIs gave significantly higher c-statistics (all P ≤ 0.05) than femoral neck BMD. Subgroup analyses showed that all FRIs were more strongly associated with hip fracture in women who were younger and had higher body mass index (BMI) or non-osteoporotic BMD (all P interaction < 0.1). CONCLUSIONS: FRIs derived from DXA-based FEA were independently associated with prior hip fracture, suggesting that they could potentially improve hip fracture risk assessment.[Abstract] [Full Text] [Related] [New Search]