These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impacts of climate and land use on N2 O and CH4 fluxes from tropical ecosystems in the Mt. Kilimanjaro region, Tanzania.
    Author: Gütlein A, Gerschlauer F, Kikoti I, Kiese R.
    Journal: Glob Chang Biol; 2018 Mar; 24(3):1239-1255. PubMed ID: 29044840.
    Abstract:
    In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2 O and CH4 respectively. N2 O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2 O emissions of tropical montane forests were generally low (<1.2 kg N ha-1  year-1 ), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha-1  year-1 ). Forest soils with well-aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha-1  year-1 ) regardless of low mean annual temperatures at higher elevations. Land-use intensification significantly increased the soil N2 O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non-CO2 GHG emissions following land-use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2 O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land-use change.
    [Abstract] [Full Text] [Related] [New Search]