These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Excessive glucocorticoid-induced muscle MuRF1 overexpression is independent of Akt/FoXO1 pathway.
    Author: Wang XJ, Xiao JJ, Liu L, Jiao HC, Lin H.
    Journal: Biosci Rep; 2017 Dec 22; 37(6):. PubMed ID: 29046370.
    Abstract:
    The ubiquitin-proteasome system (UPS)-dependent proteolysis plays a major role in the muscle catabolic action of glucocorticoids (GCs). Atrogin-1 and muscle-specific RING finger protein 1 (MuRF1), two E3 ubiquitin ligases, are uniquely expressed in muscle. It has been previously demonstrated that GC treatment induced MuRF1 and atrogin-1 overexpression. However, it is yet unclear whether the higher pharmacological dose of GCs induced muscle protein catabolism through MuRF1 and atrogin-1. In the present study, the role of atrogin-1 and MuRF1 in C2C12 cells protein metabolism during excessive dexamethasone (DEX) was studied. The involvement of Akt/forkhead box O1 (FoXO1) signaling pathway and the cross-talk between anabolic regulator mammalian target of rapamycin (mTOR) and catabolic regulator FoXO1 were investigated. High concentration of DEX increased MuRF1 protein level in a time-dependent fashion (P<0.05), while had no detectable effect on atrogin-1 protein (P>0.05). FoXO1/3a (Thr24/32) phosphorylation was enhanced (P<0.05), mTOR phosphorylation was suppressed (P<0.05), while Akt protein expression was not affected (P>0.05) by DEX. RU486 treatment inhibited the DEX-induced increase of FoXO1/3a phosphorylation (P<0.05) and MuRF1 protein; LY294002 (LY) did not restore the stimulative effect of DEX on the FoXO1/3a phosphorylation (P>0.05), but inhibited the activation of MuRF1 protein induced by DEX (P<0.05); rapamycin (RAPA) inhibited the stimulative effect of DEX on the FoXO1/3a phosphorylation and MuRF1 protein (P<0.05).
    [Abstract] [Full Text] [Related] [New Search]