These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cataract Avoidance With Proton Therapy in Ocular Melanomas.
    Author: Thariat J, Jacob S, Caujolle JP, Maschi C, Baillif S, Angellier G, Mathis T, Rosier L, Carnicer A, Hérault J, Salleron J.
    Journal: Invest Ophthalmol Vis Sci; 2017 Oct 01; 58(12):5378-5386. PubMed ID: 29049739.
    Abstract:
    PURPOSE: The lens is a radiosensitive organ. Any dose of cephalic irradiation can give rise to radiation-induced cataracts. Contrary to other forms of radiotherapy, proton therapy (PT) can spare all or part of the lens due to accurate dose deposition. We investigated whether a lens-sparing approach was relevant to avoid cataracts in uveal melanoma patients. METHODS: Patients were referred for PT from onco-ophthalmologists of private and academic institutions. Patients without preexisting cataracts or implants were entered in a prospective database. Dose thresholds responsible for cataracts were investigated in volumes of lens or lens periphery. Lens opacifications and de novo vision-impairing cataracts (VICs) had biannual follow up by ophthalmologists blinded to lens dose. Correlations between dose-volume relationships and VICs were assessed using univariate/multivariate regressions. RESULTS: Between 1991 and 2015, 1696 uveal melanoma patients were consecutively treated with PT. After a median follow up of 48 months, 14.4% and 8.7% of patients had cataracts and VIC within median times of 19 and 28 months, respectively. Median values of mean lens and lens periphery doses were 1.1 (radiobiologically effective [RBE] dose in photon-equivalent grays [GyRBE]) and 6.5 GyRBE, respectively. The lens received no dose in 25% of the patients. At an irradiated lens volume of ≤5%, there was no significantly increased risk for VIC below a dose of 10 GyRBE. CONCLUSIONS: A lens-sparing approach is feasible and results not only in reduced need for cataract surgery but also in better fundus-based tumor control. Reassessment of radioprotection rules for lens dose thresholds may follow.
    [Abstract] [Full Text] [Related] [New Search]