These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative study on the disposition of a new orally active dopamine prodrug, N-(N-acetyl-L-methionyl)-O,O-bis(ethoxycarbonyl)dopamine (TA-870) and dopamine hydrochloride in rats and dogs. Author: Yoshikawa M, Endo H, Otsuka M, Yamaguchi I, Harigaya S. Journal: Drug Metab Dispos; 1988; 16(5):754-8. PubMed ID: 2906602. Abstract: The pharmacokinetics of a dopamine derivative, TA-870, and dopamine (DA) after oral administration are compared in rats and dogs. The maximum concentrations of free DA in plasma after oral administration of TA-870 were 150 ng/ml in the rat (30 mg/kg) and 234 ng/ml in the dog (33.5 mg/kg). On the contrary, the maximum plasma concentrations after oral administration of DA at an equimolar dose to TA-870 were 12 ng/ml in the rat (12 mg/kg) and 36 ng/ml in the dog (13.5 mg/kg). The AUC values of free DA in plasma after oral administration of TA-870 (30 or 33.5 mg/kg) were 4-6 times higher than those after DA in both animal species. The peak tissue levels of radioactivity in rats after oral administration of [14C]TA-870 (30 mg/kg) were also 5.5 times higher in the liver and 1-2 times higher in other tissues than those after [14C]DA dose (12 mg/kg). In rats, the main excretion route of radioactivity after oral administration of [14C]TA-870 or DA was via the urine. The total recoveries of radioactivity in the urine and feces were 91-96% of the dose within 24 hr for both compounds. Biliary excretion in rats accounted for 19.8% of the dose of [14C]TA-870 and 12.6% of the dose of [14C]DA within 24 hr. These results demonstrate that TA-870 was well absorbed from the digestive tract, extensively metabolized to dopamine, and proved to be an orally usable dopamine prodrug.[Abstract] [Full Text] [Related] [New Search]