These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: LncRNA RP11-436H11.5, functioning as a competitive endogenous RNA, upregulates BCL-W expression by sponging miR-335-5p and promotes proliferation and invasion in renal cell carcinoma.
    Author: Wang K, Jin W, Song Y, Fei X.
    Journal: Mol Cancer; 2017 Oct 25; 16(1):166. PubMed ID: 29070041.
    Abstract:
    BACKGROUND: Accumulating evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in tumorigenesis. Here, we report a novel lncRNA, RP11-436H11.5, that regulates renal cell carcinoma (RCC) cell proliferation and invasion by sponging miR-335-5p. METHODS: Expression of lncRNA RP11-436H11.5 was determined by a qRT-PCR assay in RCC tissues. RCC cell proliferation and invasion were measured by a cell proliferation assay and a transwell invasion assay. Expression of BCL-W was detected by a western blot assay. Interactions between lncRNA RP11-436H11.5 and miR-335-5p were measured by a luciferase reporter assay and a RNA-pull down assay. In vivo experiments were used to detect tumor formation. RESULTS: In this study, the qRT-PCR results illustrated that lncRNA RP11-436H11.5 was more highly expressed in RCC tissues than in adjacent normal renal tissues. The results of survival analysis indicated that patients in the high lncRNA RP11-436H11.5 group presented significantly worse outcomes compared with those in the low lncRNA RP11-436H11.5 group. Downregulation of lncRNA RP11-436H11.5 suppressed RCC cell proliferation and invasion in vitro and in vivo. Luciferase reporter assay results demonstrated that lncRNA RP11-436H11.5 enhanced BCL-W expression by regulating miR-335-5p expression. LncRNA RP11-436H11.5 could function as a miR-335-5p decoy to derepress expression of BCL-W. CONCLUSIONS: LncRNA RP11-436H11.5 could function as a competing endogenous RNA to promote RCC cell proliferation and invasion, which might serve as a therapeutic application to suppress RCC progression.
    [Abstract] [Full Text] [Related] [New Search]