These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Targeted Resequencing of Putative Growth-Related Genes Using Whole Exome Sequencing in Patients with Severe Primary IGF-I Deficiency. Author: Grosse G, Hilger A, Ludwig M, Reutter H, Lorenzen F, Even G, Holterhus PM, Woelfle J, German GHI Study Group. Journal: Horm Res Paediatr; 2017; 88(6):408-417. PubMed ID: 29073591. Abstract: BACKGROUND/AIMS: To elucidate the genetic causes of severe primary insulin-like growth factor-I deficiency (SPIGFD) by systematic, targeted, next-generation sequencing (NGS)-based resequencing of growth-related genes. METHODS: Clinical phenotyping followed by NGS in 17 families including 6 affected sib pairs. RESULTS: We identified disease-causing, heterozygous, de novo variants in HRAS (p.Gly13Cys) and FAM111A (p.Arg569His) in 2 male patients with syndromic SPIGFD. A previously described homozygous GHR nonsense variant was detected in 2 siblings of a consanguineous family (p.Glu198*). Furthermore, we identified an inherited novel variant in the IGF2 gene (p.Arg156Cys) of a maternally imprinted gene in a less severely affected father and his affected daughter. We detected 2 other novel missense variants in SH2B1 and SOCS2, both were inherited from an unaffected parent. CONCLUSIONS: Screening of growth-related genes using NGS-based, large-scale, targeted resequencing identified disease-causing variants in HRAS, FAM111A, and GHR. Considering the increased risk of subjects with HRAS mutations for neoplasms, close clinical monitoring and a thorough discussion of the risk/benefit ratio of the treatment with recombinant IGF-I is mandatory. Segregation analysis proved to be critical in the interpretation of potential SPIGFD-associated gene variations.[Abstract] [Full Text] [Related] [New Search]