These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ultrasonic spray pyrolysis synthesis of reduced graphene oxide/anatase TiO2 composite and its application in the photocatalytic degradation of methylene blue in water.
    Author: Park JA, Yang B, Lee J, Kim IG, Kim JH, Choi JW, Park HD, Nah IW, Lee SH.
    Journal: Chemosphere; 2018 Jan; 191():738-746. PubMed ID: 29078195.
    Abstract:
    Reduced graphene oxide (RGO)/anatase TiO2 composite was prepared using a simple one-step technique-ultrasonic spray pyrolysis-in order to inhibit the aggregation of TiO2 nanoparticles and to improve the photocatalytic performance for degradation of methylene blue (MB). Different proportions (0-5 wt%) of RGO/TiO2 composites were characterized by scanning electronic microscopy (SEM), dispersive X-ray spectrometry (EDS), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD), Raman spectroscopy, UV-vis spectroscopy, and electrochemical impedance spectroscopy (EIS) to verify mechanism. From these analysis, TiO2 nanoparticles are distributed uniformly on the RGO sheets with crumpled shape during ultrasonic spray pyrolysis and surface area is increasing by increasing portion of RGO. Band gap of RGO5/TiO2 (5 wt% of RGO) composite is 2.72 eV and band gap was reduced by increasing portion of RGO in RGO/TiO2 composites. The RGO5/TiO2 composite was superior to other lower content of RGO/TiO2 composites with a rapid transport of charge carriers and an effective charge separation. The highest removal efficiency of MB was obtained at the RGO5/TiO2 composite under UVC irradiation, which coincided with the EIS, and the optimal dose of the composite was determined to be 0.5 g/L. The RGO5/TiO2 composite improve the photocatalytic degradation rate of MB over the TiO2 due to a retardation of electron-hole recombination. The MB adsorption capacity and photocatalytic degradation efficiency were greatly affected by pH changes and increased with increasing pH due to electrostatic interactions and generation of more hydroxyl radicals. The reusability of RGO5/TiO2 composite was examined during 3 cycles.
    [Abstract] [Full Text] [Related] [New Search]