These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrogen sulfide improves endothelial dysfunction in hypertension by activating peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase signaling. Author: Xiao L, Dong JH, Teng X, Jin S, Xue HM, Liu SY, Guo Q, Shen W, Ni XC, Wu YM. Journal: J Hypertens; 2018 Mar; 36(3):651-665. PubMed ID: 29084084. Abstract: OBJECTIVE: We aimed to elucidate the ameliorative effect of hydrogen sulfide (H2S) on endothelium-dependent relaxation disturbances via peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase (PPARδ/eNOS) pathway activation in hypertensive patients and rats. METHODS: Renal arteries were collected from normotensive and hypertensive patients who underwent nephron-sparing surgery. Renal arteries from 37 patients were cultured with or without sodium H2S (NaHS) 50 μmol/l. The rats were randomly divided into four groups: Sham; Sham + NaHS, two kidneys; one clipped (2K1C); and 2K1C + NaHS. Mean arterial pressure was measured by tail-cuff plethysmography. A microvessel recording technique was used to observe the effect of NaHS on endothelium-dependent relaxation. Plasma H2S concentrations were detected using the monobromobimane method. Real-time PCR and western blotting were used to assess mRNA and protein levels of AT1, cystathionine γ-lyase, PPARδ, and phosphor-eNOS. Laser confocal scanning microscopy measured intracellular NO production in human umbilical vein endothelial cells. RESULTS: NaHS improved endothelial function in hypertensive humans and rats. The 20-week administration of NaHS to 2K1C rats lowered the mean arterial pressure. In human umbilical vein endothelial cells, NaHS improved the AngII-induced production of NO. NaHS upregulated PPARδ expression, increased protein kinase B (Akt) or adenosine monophosphate kinase-activated protein kinase (AMPK) phosphorylation, and enhanced eNOS phosphorylation. A PPARδ agonist could mimic the ameliorative effect of NaHS that was suppressed by PPARδ, AMPK, or Akt inhibition. CONCLUSION: H2S plays a protective function in renal arterial endothelium in hypertension by activating the PPARδ/PI3K/Akt/eNOS or PPARδ/AMPK/eNOS pathway. H2S may serve as an effective strategy against hypertension.[Abstract] [Full Text] [Related] [New Search]