These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro antagonistic and indifferent activity of combination of 3-deoxyanthocyanidins against Toxoplasma gondii. Author: Abugri DA, Witola WH, Jaynes JM. Journal: Parasitol Res; 2017 Dec; 116(12):3387-3400. PubMed ID: 29086004. Abstract: Toxoplasma gondii is a ubiquitous intracellular zoonotic parasite estimated to affect about 30-90% of the world's human population. The most affected are immunocompromised individuals such as HIV-AIDS and cancer patients, organ and tissue transplant recipients, and congenitally infected children. No effective and safe drugs and vaccines are available against all forms of the parasite. We report here the antagonistic and indifferent activity of the combination of five different formulations of pure synthetic 3-deoxyanthocyaninidin (3-DA) chloride compounds against T. gondii tachyzoites and the synergistic and additive interaction against a human foreskin fibroblast (HFF) cell line in vitro using fluorescence microscopy, trypan blue assay, and fractional inhibitory concentration index. The individual and the combined pure 3-DA compounds were observed to have effective inhibition against T. gondii parasites with less cytotoxic effect in a ratio of 1:1. The IC50 values for parasite inhibition ranged from 1.88 μg/mL (1.51-2.32 μg/mL) for luteolinindin plus 7-methoxyapigeninindin (LU/7-MAP) and 2.23 μg/mL (1.66-2.97 μg/mL) for apigeninindin plus 7-methoxyapigeninindin (AP/7-MAP) combinations at 95% confidence interval (CI) after 48 h of culture. We found LU/7-MAP to be antagonistic and AP/7-MAP to be indifferent in interaction against T. gondii growth. Both individual and combination 3-DA compounds not only depicted very strong inhibitory activity against T. gondii, but also had synergistic and additive cytotoxic effects against HFF cells. These synthetic 3-DAs have potential as antiparasitic agents for the treatment of human toxoplasmosis.[Abstract] [Full Text] [Related] [New Search]