These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A switch of chlorinated substrate causes emergence of a previously undetected native Dehalobacter population in an established Dehalococcoides-dominated chloroethene-dechlorinating enrichment culture.
    Author: Puentes Jácome LA, Edwards EA.
    Journal: FEMS Microbiol Ecol; 2017 Dec 01; 93(12):. PubMed ID: 29088371.
    Abstract:
    Chlorobenzenes are soil and groundwater pollutants of concern that can be reductively dehalogenated by organohalide-respiring bacteria from the genera Dehalococcoides and Dehalobacter. The bioaugmentation culture KB-1® harbours Dehalococcoides mccartyi spp. that reductively dehalogenate trichloroethene to ethene. It contains more than 30 reductive dehalogenase genes; some of them are highly similar to genes found in the chlorobenzene-respiring Dehalococcoides mccartyi strain CBDB1. We explored the chlorobenzene dehalogenation capability of the KB-1 enrichment culture using 1,2,4-trichlorobenzene (1,2,4-TCB). We achieved adaptation of KB-1 to 1,2,4-TCB that is dehalogenated to a mixture of dichlorobenzenes, and subsequently to monochlorobenzene and benzene. Surprisingly, a native Dehalobacter population, and not a Dehalococcoides population, couples the dechlorination of 1,2,4-TCB to growth achieving an average yield of 1.1 ± 0.6 × 1013 cells per mole of Cl- released. Interestingly, the dechlorination of 1,2,4-TCB occurs alongside the complete dechlorination of trichloroethene to ethene in cultures fed both electron acceptors. Dehalobacter was not previously identified as a major player in KB-1, but its ecological niche was favoured by the introduction of 1,2,4-TCB. Based on 16S rRNA phylogeny, Dehalobacter populations seem to cluster into specialised clades, and are likely undergoing substrate specialisation as a strategy to reduce competition for electron acceptors.
    [Abstract] [Full Text] [Related] [New Search]