These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of periconceptional maternal alcohol intake and a postnatal high-fat diet on obesity and liver disease in male and female rat offspring.
    Author: Gårdebjer EM, Cuffe JSM, Ward LC, Steane S, Anderson ST, Dorey ES, Kalisch-Smith JI, Pantaleon M, Chong S, Yamada L, Wlodek ME, Bielefeldt-Ohmann H, Moritz KM.
    Journal: Am J Physiol Endocrinol Metab; 2018 Oct 01; 315(4):E694-E704. PubMed ID: 29089335.
    Abstract:
    The effects of maternal alcohol consumption around the time of conception on offspring are largely unknown and difficult to determine in a human population. This study utilized a rodent model to examine if periconceptional alcohol (PC:EtOH) consumption, alone or in combination with a postnatal high-fat diet (HFD), resulted in obesity and liver dysfunction. Sprague-Dawley rats were fed a control or an ethanol-containing [12.5% (vol/vol) EtOH] liquid diet from 4 days before mating until 4 days of gestation ( n = 12/group). A subset of offspring was fed a HFD between 3 and 8 mo of age. In males, PC:EtOH and HFD increased total body fat mass ( PPC:EtOH < 0.05, PHFD < 0.0001); in females, only HFD increased fat mass ( PHFD < 0.0001). PC:EtOH increased microvesicular liver steatosis in male, but not female, offspring. Plasma triglycerides, HDL, and cholesterol were increased in PC:EtOH-exposed males ( PPC:EtOH < 0.05), and LDL, cholesterol, and leptin (Lep) were increased in PC:EtOH-exposed females ( PPC:EtOH < 0.05). mRNA levels of Tnf-α and Lep in visceral adipose tissue were increased by PC:EtOH in both sexes ( PPC:EtOH < 0.05), and Il-6 mRNA was increased in males ( PPC:EtOH < 0.05). These findings were associated with reduced expression of microRNA-26a, a known regulator of IL-6 and TNF-α. Alcohol exposure around conception increases obesity risk, alters plasma lipid and leptin profiles, and induces liver steatosis in a sex-specific manner. These programmed phenotypes were similar to those caused by a postnatal HFD, particularly in male offspring. These results have implications for the health of offspring whose mothers consumed alcohol around the time of conception.
    [Abstract] [Full Text] [Related] [New Search]