These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Suppression of Stim1 reduced intracellular calcium concentration and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cells.
    Author: He F, Wu Q, Xu B, Wang X, Wu J, Huang L, Cheng J.
    Journal: Biosci Rep; 2017 Dec 22; 37(6):. PubMed ID: 29089467.
    Abstract:
    OBJECTIVE: Previous studies have demonstrated Stromal interaction molecule 1 (STIM1)-mediated store-operated Ca2+ entry (SOCE) contributes to intracellular Ca2+ accumulation. The present study aimed to investigate the expression of STIM1 and its downstream molecules Orai1/TRPC1 in the context of myocardial ischemia/reperfusion injury (MIRI) and the effect of STIM1 inhibition on Ca2+ accumulation and apoptosis in H9c2 cardiomyocytes subjected to hypoxia/reoxygenation (H/R). METHODS: Expression of STIM1/Orai1/TRPC1 was determined by RT-PCR and Western blot in mice subjected to MIRI and H9C2 cardiomyocytes subjected to H/R. To knock-down STIM1, H9C2 cardiomyocytes was transfected with Stealth SiRNA. Apoptosis was analyzed by both flow cytometry and TUNEL assay. Cell viability was measured by MTT assay. Intracellular Ca2+ concentration was detected by laser scanning confocal microscopy using Fluo-3/AM probe. Furthermore, the opening of mitochondrial permeability transition pore (mPTP) was assessed by coloading with calcein AM and CoCl2, while ROS generation was evaluated using the dye DCFH-DA in H9C2 cardiomyocytes. RESULTS: Expression of STIM1/Orai1/TRPC1 significantly increased in transcript and translation level after MIRI in vivo and H/R in vitro In H9C2 cardiomyocytes subjected to H/R, intracellular Ca2+ accumulation significantly increased compared with control group, along with enhanced mPTP opening and elevated ROS generation. However, suppression of STIM1 by SiRNA significantly decreased apoptosis and intracellular Ca2+ accumulation induced by H/R in H9C2 cardiomyocytes, accompanied by attenuated mPTP opening and decreased ROS generation. In addition, suppression of STIM1 increased the Bcl-2/Bax ratio, decreased Orai1/TRPC1, and cleaved caspase-3 expression. CONCLUSION: Suppression of STIM1 reduced intracellular calcium level and attenuated hypoxia/reoxygenation induced apoptosis in H9C2 cardiomyocytes. Our findings provide a new perspective in understanding STIM1-mediated calcium overload in the setting of MIRI.
    [Abstract] [Full Text] [Related] [New Search]