These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Association of lipoprotein(a) level with short- and long-term outcomes after CABG: The role of lipoprotein apheresis.
    Author: Ezhov MV, Afanasieva OI, Il'ina LN, Safarova MS, Adamova IY, Matchin YG, Konovalov GA, Akchurin RS, Pokrovsky SN.
    Journal: Atheroscler Suppl; 2017 Nov; 30():187-192. PubMed ID: 29096836.
    Abstract:
    OBJECTIVE: To evaluate the association of lipoprotein(a) [Lp(a)] level with short- and long-term outcomes after coronary artery bypass grafting (CABG) and to assess the effect of a 12 month course of weekly lipoprotein apheresis on vein graft patency and coronary atherosclerosis course in post-CABG patients with hyperlipidemia. METHODS: This study was performed in patients after successful CABG and consisted of three parts: a) a retrospective part with computed tomography assessment of vein graft patency in patients with first-year recurrence of chest pain after CABG (n = 102); b) a prospective trial with evaluation of cardiovascular outcomes during follow up time up to 15 years in relation to baseline Lp(a) levels (n = 356); c) an 12-months interventional controlled study in 50 patients with low-density lipoprotein cholesterol (LDL-C) levels >2.6 mmol/L prior to the operation despite statin treatment that allocated into 2 groups: active (n = 25, weekly apheresis by cascade plasma filtration (CPF) plus atorvastatin), and control (n = 25, atorvastatin alone). RESULTS: Patients subjected to computed tomography were divided in two groups: 66 (65%) with at least one vein graft occlusion and 36 (35%) without occlusions. Lp(a) levels were significantly higher in patients with occluded grafts with a median (95% confidence intervals (CI)) of 24 (17-42) mg/dL vs. 12 (6-24) mg/dL in patients with patent grafts, p < 0.01. Over a mean of 8.5 ± 3.5 years (range 0.9-15.0 years), the primary and secondary endpoints were registered in 46 (13%) and 107 (30%) patients, respectively. Patients with Lp(a) ≥30 mg/dL were at significantly greater risk for the primary endpoint (hazard ratio (HR) 2.98, 95% confidence interval (CI) 1.76-5.03, p < 0.001) and secondary endpoint (HR 3.47, 95%CI 2.48-4.85, p < 0.001) than patients with Lp(a) values <30 mg/dL. During the CPF procedure LDL-C levels decreased by 59 ± 14%, Lp(a) levels by 49 ± 15. The frequency of vein graft occlusions at study end was 14.3% (11 of 77) in the apheresis group and 27.4% (23 of 84) in the control group, p < 0.05. Progression of atherosclerosis was obtained in 26 (14.2%) segments of native coronary arteries in the apheresis group and in 50 (25.0%) segments of the control group. Regression signs were found in 30 (16.4%) and 19 (9.5%) segments, stabilization in 127 (69.4%) and 131 (65.5%) segments, respectively (χ2 = 9.37, p < 0.01). A Lp(a) level higher than 30 mg/dL was associated with a three-fold increased risk of vein grafts occlusion during first year after CABG, p < 0.001. CONCLUSION: Our data suggest that elevated Lp(a) is associated with a significantly increasing rate of one-year vein graft occlusions and adverse long-term cardiovascular outcomes whereas the use of lipoprotein apheresis improves vein graft patency during the first year after CABG.
    [Abstract] [Full Text] [Related] [New Search]