These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A biomimetic approach to conjugate vitamin B6 cofactor with the lysozyme cocooned fluorescent AuNCs and its application in turn-on sensing of zinc(II) in environmental and biological samples.
    Author: Bothra S, Babu LT, Paira P, Ashok Kumar SK, Kumar R, Sahoo SK.
    Journal: Anal Bioanal Chem; 2018 Jan; 410(1):201-210. PubMed ID: 29098339.
    Abstract:
    This communication focusses on the synthesis of red fluorescent lysozyme cocooned gold nanoclusters (Lyso-AuNCs) that have been successfully applied for the selective and specific recognition of the vitamin B6 cofactor pyridoxal-5'-phosphate (PLP). The red fluorescence of Lyso-AuNCs showed remarkable color change to yellow upon conjugation with PLP due to the formation of a Schiff base between the free -NH2 present in the lysozyme and the -CHO group of PLP. The developed PLP conjugated Lyso-AuNCs (PLP_Lyso-AuNCs) was applied for the selective turn-on recognition of Zn2+ ions in aqueous medium. The yellow fluorescence of PLP_Lyso-AuNCs exhibited significant enhancement at 475 nm in the presence of Zn2+ producing bluish-green fluorescence attributed to the complexation-induced aggregation of nanoclusters. The nanoprobe exhibits nanomolar limit of detection for Zn2+ ions (39.2 nM) and the practicality of the nanoprobe was validated in various environmental water samples and biological plasma, urine, and beetroot extract, with fairly good recovery percent. Also, the system was successfully implemented for the intracellular detection and monitoring of Zn2+ in live HeLa cells. Graphical abstract Applications of red emitting lysozyme cocooned gold nanoclusters (Lyso-AuNCs) for the selective recognition of the vitamin B6 cofactor pyridoxal-5'-phosphate (PLP) and the conjugated nano-assembly PLP_Lyso-AuNCs for turn-on detection of Zn2+ ions in various environmental and biological samples.
    [Abstract] [Full Text] [Related] [New Search]