These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model. Author: Ruan SQ, Deng J, Yan L, Huang WL. Journal: Biomed Pharmacother; 2018 Jan; 97():600-606. PubMed ID: 29101803. Abstract: This study aimed to investigate the efficacy of three-dimensional scaffolds of silk fibroin/chitosan/nano-hydroxyapatite (SF/CS/nHA) and bone marrow derived mesenchymal stem cells (BMSCs) on the repair of long segmental bone defects in rabbits. BMSCs were cultured with SF/CS/nHA in vitro, and cell proliferation, alkaline phosphatase activity and Ca2+ content were examined. A 15mm segmental defect in the radius was generated in 12 New Zealand White rabbits, which were divided randomly into three groups (n=4): experimental group with SF/CS/nHA scaffold of induced BMSCs; control group with SF/CS/nHA scaffold; and blank group without any materials. Postoperatively at 12 weeks, osteogenesis effect and the degradation and absorption of SF/CS/nHA were evaluated by X-ray, hematoxylin eosin staining, and scanning electron microscopy. In vitro, SF/CS/nHA scaffolds exhibited good biocompatibility and no toxicity. SF/CS/nHA promoted adhesion, growth, and calcium nodule formation of BMSCs compared to control (P<0.05). In vivo, we observed gradual new bone formation and bone defect gradually recovered at 12 weeks in experimental and control group, but more new bone was formed in experimental group (P<0.05). In blank group, limited bone formation was observed and bone defect was obvious. In conclusion, SF/CS/nHA scaffolds loaded with BMSCs achieve high efficacy to repair segmental defect in the radius.[Abstract] [Full Text] [Related] [New Search]