These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma. Author: Wang M, Pasquale LR, Shen LQ, Boland MV, Wellik SR, De Moraes CG, Myers JS, Wang H, Baniasadi N, Li D, Silva RNE, Bex PJ, Elze T. Journal: Ophthalmology; 2018 Mar; 125(3):352-360. PubMed ID: 29103791. Abstract: PURPOSE: To develop a visual field (VF) feature model to predict the reversal of glaucoma hemifield test (GHT) results to within normal limits (WNL) after 2 consecutive outside normal limits (ONL) results. DESIGN: Retrospective cohort study. PARTICIPANTS: Visual fields of 44 503 eyes from 26 130 participants. METHODS: Eyes with 3 or more consecutive reliable VFs measured with the Humphrey Field Analyzer (Swedish interactive threshold algorithm standard 24-2) were included. Eyes with ONL GHT results for the 2 baseline VFs were selected. We extracted 3 categories of VF features from the baseline tests: (1) VF global indices (mean deviation [MD] and pattern standard deviation), (2) mismatch between baseline VFs, and (3) VF loss patterns (archetypes). Logistic regression was applied to predict the GHT results reversal. Cross-validation was applied to evaluate the model on testing data by the area under the receiver operating characteristic curve (AUC). We ascertained clinical glaucoma status on a patient subset (n = 97) to determine the usefulness of our model. MAIN OUTCOME MEASURES: Predictive models for GHT results reversal using VF features. RESULTS: For the 16 604 eyes with 2 initial ONL results, the prevalence of a subsequent WNL result increased from 0.1% for MD < -12 dB to 13.8% for MD ≥-3 dB. Compared with models with VF global indices, the AUC of predictive models increased from 0.669 (MD ≥-3 dB) and 0.697 (-6 dB ≤ MD < -3 dB) to 0.770 and 0.820, respectively, by adding VF mismatch features and computationally derived VF archetypes (P < 0.001 for both). The GHT results reversal was associated with a large mismatch between baseline VFs. Moreover, the GHT results reversal was associated more with VF archetypes of nonglaucomatous loss, severe widespread loss, and lens rim artifacts. For a subset of 97 eyes, using our model to predict absence of glaucoma based on clinical evidence after 2 ONL results yielded significantly better prediction accuracy (87.7%; P < 0.001) than predicting GHT results reversal (68.8%) with a prescribed specificity 67.7%. CONCLUSIONS: Using VF features may predict the GHT results reversal to WNL after 2 consecutive ONL results.[Abstract] [Full Text] [Related] [New Search]