These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human periodontal ligament fibroblasts synthesize C-reactive protein and Th-related cytokines in response to interleukin (IL)-6 trans-signalling. Author: Hernández-Caldera A, Vernal R, Paredes R, Veloso-Matta P, Astorga J, Hernández M. Journal: Int Endod J; 2018 Jun; 51(6):632-640. PubMed ID: 29106735. Abstract: AIM: To characterize the potential of human periodontal ligament fibroblasts (HPLF) to synthesize CRP and Th-related cytokines in response to IL-6 in periodontal health and apical inflammation. METHODOLOGY: Primary HPLF stimulated with IL-6, soluble(s) IL-6 receptor (R) and controls were assayed for CRP, Th1, Th2, Th17 and Treg-related cytokines by quantitative real-time PCR and ELISA, respectively. IL-6R mRNA expression and its soluble protein levels were screened in HPLF cultures, and ex vivo samples of healthy periodontal ligaments (n = 5) and apical lesions (n = 13). Data were analysed with ANOVA or unpaired t-test. RESULTS: 0.5 ng mL-1 IL-6 plus 1 ng mL-1 of its soluble receptor (sIL-6R) for 24 h was effective in inducing CRP production. IL-6 alone had a mild dose-dependent effect; co-stimulation with sIL-6R significantly enhanced this effect, whereas it was completely abolished by the addition of IL-6R blocking antibody (P < 0.05). Similarly, higher mRNA expression and protein levels of Th1, Th17 and partially Treg-related cytokines were found for IL-6 combined with its soluble receptor versus the nonstimulated group and IL-6R antibody (P < 0.05). IL-6R mRNA expression was slightly induced by IL-6 compared to THP-1 cells, but sILR-6 protein could not be detected in HPLF. High sIL-6R levels were detected in apical lesions and were immunolocalized to mononuclear inflammatory cells and proliferating epithelium. CONCLUSION: IL-6 trans-signalling induced Th1 and Th17-related cytokines and represents an extra-hepatic mechanism for PCR synthesis in human periodontal ligament fibroblasts, contributing to explain the bone-destructive phenotype of apical lesions and eventually its systemic complications.[Abstract] [Full Text] [Related] [New Search]