These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enzymatic conversion of prostaglandin H2 to prostaglandin F2 alpha by aldehyde reductase from human liver: comparison to the prostaglandin F synthetase from bovine lung. Author: Hayashi H, Fujii Y, Watanabe K, Urade Y, Hayaishi O. Journal: J Biol Chem; 1989 Jan 15; 264(2):1036-40. PubMed ID: 2910843. Abstract: The primary structure of prostaglandin (PG) F synthetase from bovine lung shows 62% similarity with that of human liver aldehyde reductase (EC 1.1.1.2) (Watanabe, K., Fujii, Y., Nakayama, K., Ohkubo, H., Kuramitsu, S., Kagamiyama, H., Nakanishi, S., and Hayaishi, O. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 11-15). We therefore purified human liver aldehyde reductase to homogeneity and compared the immunological and catalytic properties of aldehyde reductase and PGF synthetase. Although both enzymes belong to a group of aldoketoreductases and their molecular weights are essentially identical, aldehyde reductase had no cross-reactivity to anti-PGF synthetase antiserum. Furthermore, there was a difference in the substrate specificity for reduction of PGs between the two enzymes. Aldehyde reductase catalyzed the reduction of PGJ2, delta 12-PGJ2, PGH2, or PGA2, but not that of PGB2, PGD2, or PGE2, whereas PGF synthetase reduced PGD2. The optimum pH, Km value for PGH2, and the turnover number were 6.5, 100 microM, and 3.1 min-1, respectively. The PGH2 9,11-endoperoxide reductase activity of aldehyde reductase was not affected in the presence of a substrate such as p-nitrobenzaldehyde, DL-glyceraldehyde, or 9,10-phenanthrenequinone, suggesting that PGH2 9,11-endoperoxide and other substrates are reduced at different active site(s). The reaction product formed from PGH2 by this enzyme was identified as PGF2 alpha by gas chromatography/mass spectrometry. These results suggest that aldehyde reductase is not exactly identical to PGF synthetase in terms of its immunological property and substrate specificity for PGs, but that this enzyme is also involved in the direct conversion of PGH2 to PGF2 alpha similar to PGF synthetase.[Abstract] [Full Text] [Related] [New Search]