These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. Author: Kumar N, Krishnani KK, Kumar P, Singh NP. Journal: J Therm Biol; 2017 Dec; 70(Pt B):61-68. PubMed ID: 29108559. Abstract: A preliminary study was conducted to delineate the ameliorating effect of dietary zinc nanoparticles (Zn-NPs) against thermal stress in Pangasius hypophthalmus reared under concurrent exposure to lead (Pb) and elevated temperature (34°C). Three diets were formulated such as control (no Zn-NPs), Zn-NPs 10 and 20mg/kg diet. Two hundred and thirty four fish were randomly distributed in to six treatments groups in triplicates; such as control group (no Zn-NPs in diet and unexposed to Pb and temperature, Ctr/Ctr), control diet with concurrent exposure to Pb and temperature (Pb-T/Ctr), Zn-NPs 10 and 20mg/kg without stressors (Zn-NPs 10mg/kg, Zn-NPs 20mg/kg), Zn-NPs 10 and 20mg/kg diet with concurrent exposure to Pb and temperature (Pb-T/Zn-NPs 10mg/kg, Pb-T/Zn-NPs 20mg/kg). The Pb in treated water was maintained at the level of 1/21th of LC50 (4ppm) at 34 °C temperature in stressors groups. Post 60 days feeding trial, critical thermal minimum (CTmin), lethal thermal minimum (LTmin), and critical thermal maximum (CTmax), lethal thermal maximum (LTmax) and biochemical attributes on P. hypophthalmus were evaluated. The results indicated that, dietary supplementation of Zn-NPs increased the CTmin, LTmin and CTmax, LTmax in P. hypophthalmus. Positive correlations were observed between CTmin LTmin (Y = - 0.495 + 10.08x, R2, 0.896) and CTmax LTmax (Y = - 0.872 + 4.43x, R2, 0.940). At the end of the thermal tolerance study, oxidative stress and lipid peroxidation (LPO) were significantly reduced and neurotransmitter enzyme was significantly increased in the groups fed with Zn-NPs @ 10mg and 20mg/kg diet. Overall results indicated that dietary Zn-NPs can confer protection against thermal stress in P. hypophthalmus.[Abstract] [Full Text] [Related] [New Search]