These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Co-culturing porcine normal urothelial cells, urinary bladder fibroblasts and smooth muscle cells for tissue engineering research.
    Author: Zupančič D, Mrak Poljšak K, Kreft ME.
    Journal: Cell Biol Int; 2018 Apr; 42(4):411-424. PubMed ID: 29115705.
    Abstract:
    New strategies for culturing and co-culturing of the main types of urinary bladder cells are essential for successful establishment of biomimetic in vitro models, which could be applied for research into, and management of, diverse urological disorders. Porcine normal urothelial cells are available in nearly unlimited amounts and have many properties equivalent to human urothelial cells. In the present study, we established normal differentiated porcine urothelial cells in co-cultures with porcine urinary bladder normal fibroblasts and/or smooth muscle cells. The optimal culture medium for establishment of differentiated urothelial cells, demonstrated by positive immunofluorescence of uroplakins, cytokeratins (CK 7, CK 20), zonula occludens 1 (ZO-1), claudin 4, claudin 8, and E-cadherin, was the medium composed of equal parts of Advanced Dulbecco's modified Eagle's medium (A-DMEM) and MCDB 153 medium with physiological calcium concentration of 2.5 mM and without fetal bovine serum, named UroM (+Ca2+  - S). This medium was also proven to be suitable for culturing of bladder fibroblasts and smooth muscle cells and co-culturing of urothelial cells with these mesenchymal cells. Urothelial cell differentiation was optimal in UroM (+Ca2+  - S) medium in all co-culture conditions and when compared to all conditioned-media combinations. To summarize, these strategies for culturing and co-culturing of urinary bladder urothelial cells with mesenchymal cells could be used as new in vitro models for future basic and applicable research of the urinary bladder and thus potentially also for translational tissue engineering studies.
    [Abstract] [Full Text] [Related] [New Search]