These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries. Author: Yu R, Zhang X, Liu T, Yang L, Liu L, Wang Y, Wang X, Shu H, Yang X. Journal: ACS Appl Mater Interfaces; 2017 Nov 29; 9(47):41210-41223. PubMed ID: 29115815. Abstract: Lithium-rich oxide material has been considered as an attractive candidate for high-energy cathode for lithium-ion batteries (LIBs). However, the practical applications are still hindered due to its low initial reversible capacity, severe voltage decaying, and unsatisfactory rate capability. Among all, the voltage decaying is a serious barrier that results in a large decrease of energy density during long-term cycling. To overcome these issues, herein, an efficient strategy of fabricating lithium-rich oxide nanowires with spinel/layered heterostructure is proposed. Structural characterizations verify that the spinel/layered heterostructured nanowires are a self-assembly of a lot of nanoparticles, and the Li4Mn5O12 spinel phase is embedded inside the layered structure. When the material is used as cathode of LIBs, the spinel/layered heterostructured nanowires can display an extremely high invertible capacity of 290.1 mA h g-1 at 0.1 C and suppressive voltage fading. Moreover, it exhibits a favorable cycling stability with capacity retention of 94.4% after charging/discharging at 0.5 C for 200 cycles and it shows an extraordinary rate capability (183.9 mA h g-1, 10 C). The remarkable electrochemical properties can be connected with the spinel/layered heterostructure, which is in favor of Li+ transport kinetics and enhancing structural stability during the cyclic process.[Abstract] [Full Text] [Related] [New Search]