These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural basis for arginine methylation-independent recognition of PIWIL1 by TDRD2. Author: Zhang H, Liu K, Izumi N, Huang H, Ding D, Ni Z, Sidhu SS, Chen C, Tomari Y, Min J. Journal: Proc Natl Acad Sci U S A; 2017 Nov 21; 114(47):12483-12488. PubMed ID: 29118143. Abstract: The P-element-induced wimpy testis (PIWI)-interacting RNA (piRNA) pathway plays a central role in transposon silencing and genome protection in the animal germline. A family of Tudor domain proteins regulates the piRNA pathway through direct Tudor domain-PIWI interactions. Tudor domains are known to fulfill this function by binding to methylated PIWI proteins in an arginine methylation-dependent manner. Here, we report a mechanism of methylation-independent Tudor domain-PIWI interaction. Unlike most other Tudor domains, the extended Tudor domain of mammalian Tudor domain-containing protein 2 (TDRD2) preferentially recognizes an unmethylated arginine-rich sequence from PIWI-like protein 1 (PIWIL1). Structural studies reveal an unexpected Tudor domain-binding mode for the PIWIL1 sequence in which the interface of Tudor and staphylococcal nuclease domains is primarily responsible for PIWIL1 peptide recognition. Mutations disrupting the TDRD2-PIWIL1 interaction compromise piRNA maturation via 3'-end trimming in vitro. Our work presented here reveals the molecular divergence of the interactions between different Tudor domain proteins and PIWI proteins.[Abstract] [Full Text] [Related] [New Search]