These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanical stress promotes matrix synthesis of mandibular condylar cartilage via the RKIP-ERK pathway.
    Author: Sun L, Zhao J, Wang H, Pan Y, Wang L, Zhang WB.
    Journal: J Mol Histol; 2017 Dec; 48(5-6):437-446. PubMed ID: 29119279.
    Abstract:
    Mandibular hypoplasia is a common jaw deformity that affects breathing, occlusal function and facial aesthetics. Stimulating mandibular condylar growing with functional appliances is an ordinary but controversial treatment method in orthodontics. Therefore, it is vital to clarify how functional appliances affect condylar growing. Raf-1 kinase inhibitor protein (RKIP), as an endogenous inhibitory molecule of the ERK signaling, is postulated to involve in stress-induced response to articular cartilage. This study was to reveal the role of RKIP in regulating cartilage matrix synthesis with functional appliance treatment. Here, position rat mandibular forward simulating functional appliance effect to examine the stress-induced modification of mandibular condylar in vivo, meanwhile rat mandibular condylar chondrocytes (Mccs) were subjected to cyclic tensile stress (CTS, 16%, 1 HZ). The results showed that mandibular forward therapy enhanced condylar cartilage growth. The thicknesses of all layers of condylar cartilage were increased significantly. RKIP expression was also increased in the mature cartilage layer. In addition, CTS could enhance extracellular matrix formation and cartilage marker expression (aggrecan and collagen II), which shared a similar expression pattern with RKIP in Mccs. However, CTS induced up-regulation of collagen II and aggrecan was blocked by RKIP knockdown. Nuclear p-ERK, targeting downstream of RKIP, showed a decrease after CTS,which was disappeared in RKIP-knockdown Mccs. Taken together, physiological mechanical stimulation promotes cartilage growth modification by up-regulating RKIP through inhibiting ERK signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]