These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hispidulin mediates apoptosis in human renal cell carcinoma by inducing ceramide accumulation.
    Author: Gao H, Gao MQ, Peng JJ, Han M, Liu KL, Han YT.
    Journal: Acta Pharmacol Sin; 2017 Dec; 38(12):1618-1631. PubMed ID: 29119970.
    Abstract:
    Hispidulin, a polyphenolic flavonoid extracted from the traditional Chinese medicinal plant S involucrata, exhibits anti-tumor effects in a wide array of human cancer cells, mainly through growth inhibition, apoptosis induction and cell cycle arrest. However, its precise anticancer mechanisms remain unclear. In this study, we investigated the molecular mechanisms that contribute to hispidulin-induced apoptosis of human clear-cell renal cell carcinoma (ccRCC) lines Caki-2 and ACHN. Hispidulin (10, 20 μmol/L) decreased the viability of ccRCC cells in dose- and time-dependent manners without affecting that of normal tubular epithelial cells. Moreover, hispidulin treatment dose-dependently increased the levels of cleaved caspase-8 and caspase-9, but the inhibitors of caspase-8 and caspase-9 only partly abrogated hispidulin-induced apoptosis, suggesting that hispidulin triggered apoptosis via both extrinsic and intrinsic pathways. Moreover, hispidulin treatment significantly inhibited the activity of sphingosine kinase 1 (SphK1) and consequently promoted ceramide accumulation, thus leading to apoptosis of the cancer cells, whereas pretreatment with K6PC-5, an activator of SphK1, or overexpression of SphK1 significantly attenuated the anti-proliferative and pro-apoptotic effects of hispidulin. In addition, hispidulin treatment dose-dependently activated ROS/JNK signaling and led to cell apoptosis. We further demonstrated in Caki-2 xenograft nude mice that injection of hispidulin (20, 40 mg·kg-1·d-1, ip) dose-dependently suppressed tumor growth accompanied by decreased SphK1 activity and increased ceramide accumulation in tumor tissues. Our findings reveal a new explanation for the anti-tumor mechanisms of hispidulin, and suggest that SphK1 and ceramide may serve as potential therapeutic targets for the treatment of ccRCC.
    [Abstract] [Full Text] [Related] [New Search]