These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bicarbonate reabsorption by the kidney of the newborn rabbit.
    Author: van der Heijden AJ, Guignard JP.
    Journal: Am J Physiol; 1989 Jan; 256(1 Pt 2):F29-34. PubMed ID: 2912164.
    Abstract:
    Bicarbonate reabsorption by the immature kidney in response to acute acid-base changes was assessed in 50 anesthetized newborn rabbits before the end of nephrogenesis. The normal newborn rabbit (age 5-12 days) is in a state of hypochloremic metabolic alkalosis (PHCO3-, 31.9 +/- 0.6 mmol/l; PCl-, 83.1 +/- 1.0) and excretes a hypertonic (Uosmol = 578 +/- 41 mosmol/kgH2O), alkaline (UpH = 7.40 +/- 0.15) urine containing 50 +/- 9 mmol/l Cl- and 13 +/- 4 mmol/l Na+. The alkalosis is probably generated by an alkaline load contained in the mother's milk and maintained by a state of chloride wasting and volume contraction. In this alkalotic model, bicarbonate reabsorption, expressed per milliliter glomerular filtration rate (GFR), correlates positively with arterial CO2 pressure (PaCO2). The ability of the immature kidney to reclaim filtered bicarbonate in response to an elevation of the plasma carbon dioxide tension remains unlimited up to PaCO2 of 110 mmHg (y = 20.7 + 0.15 x, r = 0.82, P less than 0.001). Hypercapnia is associated with a marked fall in GFR, so that the positive correlation between bicarbonate reabsorption and PaCO2 vanishes when the bicarbonate reabsorption rate is expressed in absolute terms. Bicarbonate reabsorption is strongly dependent on the filtered load during both acutely induced metabolic acidosis and alkalosis. The acid-base state of the newborn rabbit is in sharp contrast with that of most animal species, and the renal handling of bicarbonate as a function of GFR does not show signs of tubular immaturity.
    [Abstract] [Full Text] [Related] [New Search]