These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pueraria lobate Inhibits RANKL-Mediated Osteoclastogenesis Via Downregulation of CREB/PGC1β/c-Fos/NFATc1 Signaling. Author: Park KH, Gu DR, Jin SH, Yoon CS, Ko W, Kim YC, Lee SH. Journal: Am J Chin Med; 2017; 45(8):1725-1744. PubMed ID: 29121799. Abstract: Puerariae radix, the dried root of Pueraria lobate Ohwi, is known to prevent bone loss in ovariectomized mice; however, the precise molecular mechanisms are not understood. In this study, we investigated the effects and underlying mechanisms of action of Puerariae radix extract (PRE) on receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis. PRE dose-dependently inhibited osteoclast differentiation and formation, decreased the bone-resorbing activity of osteoclasts, and downregulated the expression of osteoclast differentiation marker genes. The expression of osteoclastogenic factors produced by PRE-treated osteoblasts such as RANKL, macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG) was comparable to that of untreated (control) cells. However, the formation of osteoclasts via bone marrow cell and calvaria-derived osteoblast co-cultures was suppressed by PRE treatment. Therefore, the inhibitory effects of PRE on osteoclastogenesis clearly targeted osteoclasts, but not osteoblasts. PRE treatment considerably reduced RANKL-induced mitogen-activated protein kinases (MAPKs) activity, especially c-Jun N-terminal kinase, in osteoclast precursor cells. In addition, PRE markedly suppressed cAMP response element-binding protein (CREB) activation and the induction of peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β), which stimulate osteoclastogenesis - an effect that was not observed for puerarin and 17-β estradiol. Finally, PRE treatment significantly repressed the expression of c-Fos and the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is a master transcription factor for osteoclastogenesis in vitro and in vivo. Overall, these results strongly suggest that PRE is an effective inhibitor of RANKL-induced osteoclastogenesis and may be a potent therapeutic agent for bone-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.[Abstract] [Full Text] [Related] [New Search]